AGING, LABOR MARKETS, PENSION REFORM C. Keuschnigg and M. Keuschnigg

• Pension system unsustainable in Austria:

– public pensions 2000: 14.5% of GDP, vs. 10.4% in EU

- contributions: 10.25% workers, 12.55-15% employers
- large gov. transfers to pension system: $\approx 2.5\%$ of GDP
- generous pensions: max. replacement rate 80%
 average net replacement rate 78%
- actual av.retirement age much lower than statutory:
 58.5 for men and 56.8 for women
- aging: dependency ratio from 23% in 2000 to 49% in 2050

• Research and policy questions:

- labor market effects (unemployment, labor supply)
- macroeconomic general equilibrium effects
- net gains/losses, intergenerational redistribution

• Main conceptual arguments:

- implicit tax component of contributions
 in an earnings related PAYG pension system
- distortions: extensive and intensive labor supply
- job creation, unemployment and aggregate income

• Quantitative analysis, model innovations:

- OLG with demographics, workers and retirees
- search unemployment and demographics
- endogenous labor supply and search intensity
- pension system with tax benefit linkage

• Simulation scenarios for pension reform:

- Increasing life expectancy (LIFE)
- Increasing population (AGE, baseline scenario)
- Elimination of pension subsidies (Scenario FISC)
- Cutting replacement rate (Scenario REPL)
- Raising retirement age (Scenario RET)

THE MAIN ARGUMENT

• Expected life-time utility:

$$U_t = E\left[\bar{C}_t^i - \varphi\left(e_t^i\right)\right] - \psi\left(\zeta_t\right), \quad \bar{C}_t^i \equiv C_t^{1i} + C_{t+1}^{2i}/R.$$

Timing: 1. search \Rightarrow 2. work \Rightarrow 3. consume

• Wage and pension income:

Worker :
$$y_t^E = (1 - t) w_t e_t, \qquad y_t^U = z,$$

Pensioner : $E_{t+1}^E = \phi_{t+1} \cdot (1 - t) e_t w_t, \quad E_{t+1}^U = \bar{E}.$

• Stage 3: consumption

contribution rate t, implicit tax rate τ

$$\begin{aligned} \bar{C}_t^E &= (1-t) \, w_t e_t + \phi_{t+1} \cdot (1-t) \, e_t w_t / R = \left(1 - \tau^i\right) w_t e_t \\ \tau^i &\equiv t - (1-t) \, \phi_{t+1} / R < t \end{aligned}$$

• Intertemporal effect on implicit tax:

lower replacement rate ϕ_{t+1} tomorrow raises implicit tax τ^i already today!

LABOR MARKET EFFECTS:

• Stage 2: work effort determines

job value $V^E = \max_e \left\{ \left(1 - \tau^i\right) we - \varphi(e) \right\}$ $\left(1 - \tau^i\right) w = \varphi'(e)$

implicit tax reduces

- hours worked (intensive labor supply)

-job value V^E (reward for search)

• Search stage: compare V^E with value of unemployment $V^U = z + \overline{E}/R$

$$U = \max_{\zeta} \left\{ \zeta f \cdot V^{E} + (1 - \zeta f) \cdot V^{U} - \psi(\zeta) \right\}$$

$$\Rightarrow \quad \left(V^{E} - V^{U} \right) \cdot f = \psi'(\zeta) \,.$$

- implicit tax reduces job value V^E , and return to search (extensive labor supply)

• Wage bargaining: tax shifting raises wages, reduces producer rent, reduces job creation

$$(F_L - w) e \cdot q = \kappa R$$

COMPUTATIONAL MODEL

- Small open economy with OLG (Blanchard, Gertler)
 - => workers, retirees and population dynamics
 - => workers retire with probability 1ω
 - => only retirees die with probability 1γ
- **RETIREES**: maximize value $V^R(A_t^R, P^R)$, pension rights determine pensions:

$$E_t^k = \left(\varphi_k P^{R,k} / w_k\right) \cdot w_t = \hat{\varphi}_k \cdot w_t$$

pension entitl. previously accumulated

$$P_{t+1}^{W} = w_t e_t n_t^{E} / T + \left[1 - \vartheta\left(T\right)\right] P_t^{W}$$

• WORKERS: maximize expected utility

$$V^{W}\left(A_{t}^{W}, n_{t}^{E}, P_{t}^{W}\right) = \max\left[\left(Q_{t}^{W}\right)^{\rho} + \beta\left(G\bar{V}_{t+1}\right)^{\rho}\right]^{\frac{1}{\rho}}$$
$$\bar{V}_{t+1} = \omega V_{t+1}^{W} + (1-\omega) V_{t+1}^{R}$$
$$Q_{t}^{W} = C_{t}^{W} - \varphi\left(e_{t}\right) n_{t}^{E} - \psi\left(\xi_{t}\right) n_{t}^{U}$$
sourings $A^{W} = R A^{W} + q\bar{u}P + q^{T} - Q^{W}$

s.t. savings $A_{t+1}^W = R_t A_t^W + \bar{w}_t^D + z_t^T - Q_t^W$

• Inflows and outflows of (un-)employment

$$n_{t+1}^{E} = (1-s) \cdot n_{t}^{E} + \xi_{t} f_{t} \cdot \left(1 - n_{t}^{E}\right)$$

	Variables	ISS	LIFE*	AGE*	$\mathrm{REPL}^{\#}$	$\operatorname{RET}^{\#}$
	retworker ratio	0.454	0.552	0.552	0.552	0.446
t^{SS}	contribution rate	0.205	0.251	0.251	0.268	0.219
\hat{t}^{SS}	implicit s.s.tax	0.037	0.071	0.071	0.107	0.069
t^W	wage tax rate	0.205	0.353	0.353	0.258	0.135
r^P	replacement rate	0.781	0.781	0.781	0.703	0.703
u	unempl. rate	5.800	7.908	7.908	7.058	5.510
K	capital stock		-17.879	-12.952	4.944	25.381
L^D	labor demand		-17.879	-12.952	4.944	25.381
w	gross wage		0.075	0.075	-0.025	-0.004
e	labor supply		-10.375	-10.375	4.007	13.788
ξ	search intensity		-18.980	-18.980	7.946	27.067
\bar{y}	average income		-43.299	-39.897	23.848	98.045
E	pension p.c.		-11.790	-11.790	-5.554	6.312

LONG-RUN RESULTS

 \bullet *) % change relative to ISS, #) % change rel. to AGE

- unemployment benefits partially indexed
- Av.wage income: $\bar{y} = (1 t^w t^{ss})w \cdot e \cdot N^E + z \cdot N^U$
- Entitlements: $P^{W}(w \cdot e \cdot n^{E})$, pensions $E = \varphi \cdot P^{w}$

SUMMARY OF MAIN RESULTS

- strong labor market effects of aging and pension reform
- opposite short- and long-run effects!
- Future work on alternative policy scenarios
 - strengthening tax benefit link,
 - partial funding of the system,
 - introducing individual accounts